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Elastic quantum transport through small structures 
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Department of Materials. University of Oxford, Parks Road, Oxford OX1 3PH. UK 

Received 12 June 1992 in final form I 1  December 1992 

AbStrad. We develop a general fOIlUd~on of the problem Of elastic transpori between two 
semi-infinite systems, connected by a system of finite size, and derive expressions for the 
current in and the differential conductance of such a circuit in lhe limit of zero interactions 
between the canien. These exppressions are exact in the applied voltage, the coupling of the 
components of the circuit, and lhe tempen" of lhe drcuiL We then apply OUT mulls in a 
tight-binding approximation to three specific cases: the one-atom contact, the finite. disordered 
one-dimensional chain, and the generalized stacldng fault. 

1. Introduction 

In this paper we treat the general problem of elastic quantum transport across a system 
of finite size placed between two semi-infinite systems. The problem of direct @ansport 
between two semi-infinite systems is a subcase of this general problem. The formal essence 
of the method, developed below, is simple. We start with an initial Hamiltonian, Ho. We 
divide its complete orthonormal set of eigenstates into two or more mutually orthogonal 
subsets, each of which bears a clear spatial relation to a particular component of the system 
described by Ho. Now we add to HO a term V that couples these subsets. Finally, 
we consider the current between the mutually orthogonal subsets of the complete set of 
eigenstates of HO due to some particular filling of the eigenstates of thefinal Hamiltonian, 
H = Ho + V .  

The derivations in sections 2 and 3 are performed from the point of view of an 
orthonormal tight-binding model. At the end of section 3, however, there is a complete 
description of the implementation of the method in the continuum Ir) representation, where 
Ir) is the Duac ket representing position. 

2. The zero-eurrent theorem 

The whole of our analysis will rely on one fundamental result, which we prove in this 
section. 

Consider two semi-infinite systems, I and 2. The coupling between them is zero 
(figure I). In the orthonormal tight-binding picture, employed here, this means that all 
hopping integrals between the two systems have been set equal to zero. 

Let this situation he described by a Hamiltonian Ho. Let system 1 have a continuous set 
of singleparticle eigenstates {I@,)} with eigenvalues [ E l )  and system 2 have a continuous 
set of single-particle eigenstates {I&)) with eigenvalues { E z ) .  The set of vectors {l@,J), 
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Figure 1. ' b o  uncoupled semi-infinite system, 1 < a n d 2  

where n runs over all possible values of indices 1 and 2, is the set of eigenvectors of Ho; 
[I&)] is acomplete orthonormal set. The sets {I&}] and {I&}] are two mutually orthogonal 
subsets of the complete set of eigenstates of Ho, such as those discussed in the introduction. 
Let GM be the Green operators for the initial, decoupled system 

(1) GO*(E) = Iim ( E  - no f ic)-'. 

p o Q )  = ICo-(E) - G'+(E)]/(21ri). 

p0(E)IC) = W - Edl4J. 

e-bw 

The density-of-states operator, po, for the initial system is given by 

(2) 

From equations (1) and (2) we obtain 

(3) 

Now we couple systems 1 and 2 by an additive term V in the Hamiltonian. Thus, the 

H = Ho+ V. (4) 

V represents the switching on of the hopping between systems 1 and 2 but may have 
other non-zero matrix elements too. We assume that V causes no level shifts, i.e. that the 
eigenstates of H (which we assume to be single-particle states) also form a continuum in 
such a way that to every eigenstate of HO there corresponds exactly one eigenstate of H with 
the same energy. At this stage of the argument, we encounter a subtlety, which we must 
discuss in order to avoid confusion. So far we have ignored particle interactions inasmuch 
as we have chosen to work with singleparticle states as opposed to antisymmehized many- 
particle states. However, we may not neglect self-consistency altogether, even at this level 
of simplicity, owing to the absolutely uncompromisable requirement that, both before and 
after the coupling V has been introduced. systems 1 and 2 have to be electrically neutral. 
This requirement means that we cannot divorce the act of coupling 1 and 2 from the act 
of filling the new eigenstates with electrons. In particular, with every mode of filling of 
these eigenstates will be associated a rigid energy shift of the whole of 2 relative to 1, to 
satisfy the neutrality condition. (For example, the contact potential is the rigid energy shift 
associated with the equilibrium filling of the eigenstates for two coupled dissimilar metals, 
and the battery voltage, to be discussed later, is the rigid energy shift associated with a 
particular non-equilibrium filling of the eigenstates for the coupled system.) Now, what we 
actually do is decide what mode of filling of the eigenstates for the coupled system we are 
going to adopt, determine the associated rigid shift of the potential of 2 relative to that of 
1, and include that shp in Ho, Thus we know that, so long as we do adopt the mode of 
filling of the eigenstates for the coupled system for which that energy shift was chosen, the 
assumption of 'no level shifts', mentioned earlier, will hold. 

We have assumed that HO and H have no bound states, but all results will hold when HO 
or H, or both, do have bound states, so long as these bound states lie outside the respective 
continua. 

new Hamiltonian H is given by 
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The eigenstates of H, {I@:)], satisfy the Lippmann-Schwinger equation 

I@:) = 14") + ~O+(E,)VI@:) (5) 
where E,, is the energy of 14") and I@:). {I@:)] is a complete orthonormal set. The Green 
operators G* for the coupled system are given by 

G*(E) = Iim (E - H fie)- ' .  

p(E) = [G-(E)  - G+(E)]/(2zi). (7) 

p(E)l@:) =&(E -&)I@:). (8) 

(6) c-bw 
The density-of-states operator, p ,  for the coupled system is given by 

Therefore 

Now we derive an expression for the operator representing the current in the system. 
This is the operator for the current into system 2, i.e. for the current into the set of states 
{[&)). The operator for the current into any state lu), I., is given by 

(9) Iu = (e/W(lu)(ulH - Hlu)(ul). 
This result follows from the Schrijdinger equation of motion for the operator lu)(u[. 

Hence, the operator for the current into system 2, I ,  is given by 

The fundamental result, or 'the zero-current theorem', which we have set out to prove, 
is the following: the sum of the expectation values of I in all states I@$), whose energies 
E. lie in an energy interval dE about an energy E, is zero for any E. The physical meaning 
of this statement is that, if all states I@$) with En in [E, E + dE] are equally Elled. then 
the current from 1 into 2 will be cancelled exactly by the current from 2 into 1. Here is 
the proof: 

The sum of the expectation values of I in all states I@:) with E. in [E, E + dE], 
dZ(E), is given by 

dZ(E) =dETr[lp(E)]. (12) 
Taking the trace in the orthonormal basis {I@:)], we obtain 

But, by definition, (&]VI@$) = (hITl&) T%, where 7' is the 7'-operator, and from 
equations (5) and (l), (& I @:) = 8% + Gw(En)n7'&,. (Throughout the present section, 
Mpq will be understood to mean (@pplMl@q), for any operator M.) ?herefore, equation (13) 
becomes 
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But since Go++ = Go- and G"(E,)z - Coc(E,&2 = 2 x i p 0 ( E n ) ~  = 2xiS(E. - E t ) ,  
equation (14) becomes 

T N Todorov et ul 

However, as a consequence of the unitarity condition (SSt)pq = 6,, where S is the 
S-matrix, defined by S = s2-tQt, with s2* being the Meller operators, defined by 

r2* = CIICsnf)(@"l 
m 

and of the relation Sa,, = 6.6 - 2xi8(Eo - 
known relation (see e.g. Ill) 

the matrix elements of T satisfy the well 

T, - T J ~  = - k i  T,,T,',G(E. - E ~ )  for = E ~ .  (16) " 
Putting p = q = 2 and substituting in (15), we finally obtain 

d l ( E ) =  edE - - ( - 2 x c I T z , 1 2 S ( E " - E z ) S ( E - E 2 )  

h 2  n 

which is the result we wished to prove. 

3. Derivation of the current and conductance formulae 

We now turn to our main task-the discussion of elastic transport through small structures. 
The term 'small structure' will be employed somewhat loosely to designate any structure 
whose h e a r  dimension in the direction of current flow is small compared with the inelastic 
mean free path of the carriers in the bulk of the respective substance. A small stn~cture 
will therefore act as a predominantly elastic scatterer. We confine our analysis to the limit 
when the small structure under study, as well as all other components of the circuit, of 
which it is a part, acts as a purely elastic scatterer. Also, we shall work with single-pmicle 
states, assuming non-interacting carriers. (Self-consistency corrections can in principle be 
introduced into the analysis, but this possibility will not be dealt with in this work.) 

The abovedefined conduction regime leads to a simple picture of the conducting circuit. 
In this picture, the small structure, which from now on will be referred to as the 'sample', 
is connected by semi-infinite (not necessarily perfectly conducting, bur necessarily for 
this analysis, elastically scattering) leads to a system of heat-particle reservoirs, where all 
inelastic scattering takes place and thermal equilibrium reigns. 

In the case of two reservoirs, the configuration represents an ordinary battery, connected 
across the sample. The difference between the absolute positions of the Fermi levels of the 
two reservoirs is the battery voltage. me absolute position of the Fermi level is known as 
the electrochemical potential, as opposed to the position of the Fermi level relative to some 
reference core state, which is known as the chemical potential.) The current is due to the 
unequal filling of the right- and the left-going eigenstates of the lead-sample-lead system. 

We now consider the three-component system, described above, as represented 
schematically in figure 2 The two semi-infinite systems 1 and 2 are the leads and the 
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finite system s is the sample. The three components are decoupled (which, once again, 
in the orthonormal tight-binding picture employed here, means that all hopping integrals 
between the components are zero), and the potential energy of the whole of 2 has been 
adjusted so that the electmchemical potential of 2 lies an amount eW below that of 1, 
where W will be the battery voltage. In the light of our previous discussion, we include 
in HO a rigid shift of the potential of 2 relative to that of 1 in such a way that both 1 and 
2 will be electrically neutral when we fill the eigenstates of the coupled lead-sample-lead 
system with the non-equilibrium distribution, provided by the battery. Let system 1 have 
a continuous set of singleparticle eigenstates (141)) with eigenvalues ( E l )  and system 2 
have a continuous set of single-particle eigenstates {I&)) with eigenvalues I & } .  Let s have 
a discrete set of single-particle eigenstates {l&)) with eigenvalues (E.). Thus, the union 
of the vector sets {I&)], where n runs over all possible values of indices 1 and 2, and 
{1&)) is the set of eigenvectors of the initial Hamiltonian, Ho. {14s})] is a complete 
orthonormal set The sets {I&)), {I&}] and (I&)] are three mutually orthogonal subsets of 
the complete set of eigenstates of Ho, such as the ones discussed in the inwoduction. 

Figure 2. The uncoupled Lhreecomponent system: the 
semi-infinite systems 1 and 2 are the leads, and the hmte 
system s is the sample. 

We define the Green operators G" and the density-of-states operator po for the initial, 
decoupled system as before, by equations (1) and (Z), respectively. This time, however, we 
note that we can write G"(E) as 

Now we define two projection operators, PI and P2, as follows 

and observe that 

where G F  are the Green operators for system 1 only. Similarly 

p 2 c M ( ~ )  = c M ( ~ ) 4  = (22) 

Pip0(E) = p 0 W S  = (23) 

P d Q )  = P'Q)Pz = P%E) (24) 

where GF are the Green operators for system 2 only. We also have 

and 
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where py and p; are the density-of-states operators for systems 1 and 2, respectively. 
Now we couple the three systems, 1, sand 2, by an additive term V in the Hamiltonian 

so that the new Hamiltonian H is (Ha + V ) ,  as in equation (4). Once again, V represents 
the switching on of the hopping between the three systems, but may in general have other 
non-zero matrix elements, such as on-site energy shifts, etc. 

Again, we assume that V causes no level shifts, so that the eigenstates of H (which we 
assume to be single-particle states) form a continuum in such a way that to every eigenstate 
from the continuous part of the spectrum of HO there corresponds exactly one eigenstate 
of H with the same energy. We have assumed that there are no bound states among the 
eigenstates of systems 1 and 2, or among the eigenstates of H, but, again, all results will 
also hold when such bound states exist, so long as they lie outside the respective continua. 

As before, the eigenstates of H, [ l+~)), arise from the continuum eigenstates of Ho. 
(I+,,)), via the LippmannSchwinger equation (5). which may equivalently be written as 

T N Todomv et a1 

I+:) = [ I +  G+(En)Vl l~n)  (2.5) 

where G+ is the Green operator for the coupled system. (The Green operators G* and the 
density-of-states operator p for the coupled system are defined as before, by equations (6) 
and (7). respectively.) [I+$)] is a complete orthonormal set. Note that via the energy shift 
eW in Ho, both G‘(E) and G*(E) are implicitly functions of W .  

We shall find it convenient to divide the set of states (I@:}) into two subsets: one of 
them is [ l + f ) ) ,  the eigenstates of If that have come from the states ( I ~ I ) ) ,  and the other 
one is [I+$}], the eigenstates of H that have come from the states {I&}). The states [I@:)} 
are travelling to the right, and the states [I+:)] to the left. 

For the current operator, I, for the coupled system we once again choose the operator 
that represents current into system 2. I is given by equation (10). which reduces to equation 
(1 1) as before. Now we write (1 1) as 

(26) 

where Pz is the projection operator defined in (20). Our task thii time is to calculate dh(E) ,  
the sum of the expectation values of I in all right-moving eigenstates of the coupled system 
with energies in the interval [E, E + dE1. S i c e  the right-moving states are the I+:), 

I = ( e / i ) ( P z V  - Vfz)  

dh(E)  is given by 
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Remembering that G:++ = G!- and that G$-(E) - G!+(E) = 7xipg(E), equation (27) 
becomes 

Owing to the term (@llp0(E)[@1) (which vanishes identically unless El = E), we can 
replace El by E everywhere in (32). Also, since po is diagonal in [I&)], we can rewrite 
(32) as 

Finally, from (35) we obtain 

(36) 
7 x e  

f i  
dlR(E) = dE-Tr[pp(E)tt(E)p,O(E)t(E)J. 

By the zero-current theorem, equation (17). dIR(E) is exactly equal in magnitude to 
dIL(E), the sum of the expectation values of Z in all left-moving eigenstates for the coupled 
system with energies in the interval [E, E+dE]. (To see that (17) still holds, imagine only 
coupling s and one of the leads first, thereby re-creating the starting point of the analysis 
leading to (17). and then repeating that analysis.) Now we fill the right-going states, ( [ @ ~ ) ] ,  
with a Fermi-Dirac distribution f ( E ) ,  and the left-going states, [I$;)], with a Fermi-Dirac 
distribution f(E + eW). The total current I in the system is 

I = [dk(E) f (E)  - Idk(E)I f(E + ew)] 

(37) 

Equation (37) is the most general expression for the current across the sample at an applied 
battev voltage of W, which is exact in W (via the W dependence of Go"(E) and G'(E)), 
the coupling V and the temperature, within the limits of the conduction regime, specified 
earlier (which, once again, assumes purely elastic scattering in all parts of the circuit, and 
singleparticle states). 

As was stated earlier. the above derivation of (37) is based on an orthonormal tight- 
binding picture. At the same time, the idea, outlined in the introduction, is perfectly general. 
For the sake of illustrating its generality, and for the sake of completeness, we shall now 
discuss briefly the implementation of this idea in the continuum Ir) representation. 

b e  
h 

J 
= - J Tr[pp(E)rt(E)p~(E)t(E)l[f(E) - f ( E  + eW)1 dE. 
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In this discussion, we shall regard the sample as being a part of one of the leads. Thus, 
the set-up we envisage corresponds to figure 1 with systems 1 and 2 being two semi-infinite 
solids, separated by a gap. Let C(x, y .  2) = 0 define an open surface lying between systems 
1 and 2. Consider the potential banier given by a6(C), where [Y is a parameter and S is the 
Dirac delta function. Let the initial Hamiltonian Ha include this barrier with somefinite a. 
The eigenstates of Ho fall into two classes: right-moving ones and left-moving ones. The 
right-moving ones consist of a wave incident in system 1, partially reflected back into 1 and 
partially transmitted into 2. Conversely, the left-moving ones consist of a wave, incident in 
system 2, partially reflected back into 2 and partially transmitted into 1. Let the right-moving 
eigenstates of HO be the set (I&)] and the left-moving ones be the set [I&)]. Exactly as 
before, (1$1)] and [I&.)] are mutually orthogonal and their union, the set of eigenstates of 
Ho. [[&,)], n = 1.2, is complete. Let the coupling V, introduced before, correspond to the 
removal of the barrier a8(C), so that the final Hamiltonian, H = Hof V, describes the fully 
coupled system. We can now repeat every single step of the derivation presented above and 
thus calculate the transport between [I$,)] and {I&)] due to some filling of the eigenstates 
of H. All results are going to be implicit functions of the parameter a. In the limit a --f M, 
when the initial barrier becomes impenetrable and the transmitted parts of [Ig,)] and {I&)] 
become equal to zero, the transport between the two sets of states (141)) and (I&)] becomes 
equal to the transport between the two spatial regions, represented by systems 1 and 2. In 
this limit, equation (37) coincides with the result of the recent time-independent study by 
Pendry et a1 [2]. 

Equation (37) is also in agreement with the results of a very recent timedependent 
calculation [3], in which the coupling V is switched on adiabatically, and the system is 
allowed to reach a steady state. 

Before carrying on with our main discussion. we shall compare the present formalism 
with the well known Bardeen transfer Hamiltonian formalism [4] (BTHF). m e  BTHF is a 
first-order time-dependent perturbation calculation in the continuum Ir) representation of 
the current between two weakly coupled semi-infinite metals 1 and 2 and is based on a 
very different starting point from one employed in this paper. The essence of the BTHF 
is the following. Let {IAl)} be the set of eigenstates of metal 1 in the absence ofmetal 
2 and (IA,)) be the set of eigenstates of metal 2 in the absence ofmetal I .  Thus, (IA1)) 
and ( ~ A z ) ]  are both complete and therefore not mutually orthogonal. (Note the difference 
from the sets [ 1$1)) and (I&)).) An electron is released from a state [AI).  Its timeevolved 
state vector is then expressed in terms of the complete set ([A,)) and the transition rate into 
each state I&) is computed tofirsr order in the hopping integral between lAl) and I&). 
Thus, the BTHF can only be used in the weak-coupling limit. We now return to our main 
discussion. 

Differentiating (37) with respect to the battery voltage W yields the differential 
conductance of the circuit, G, which is a function of W itself and of the temperature, B 
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In the limit B = 0, - f ' (E)  becomes 26(E - EF), with spin degeneracy, and hence 

G(O, 0) = (4ze2/fi) T~[~~(EF)~'(EF)P~~(EF)~(EF)I (40) 

where EF is the Fermi energy for the coupled system in the absence of an applied voltage. 
Equation (40) is a generulivuion of the Landauer conductance formula [5-lo], because 

the derivation of (40) is based on no assumptions about the leads, other than that they have 
stationary states. 

In deriving (40). we assumed that the electrochemical potential drop between the leads 
in the steady state is the same as that between the reservoirs, W, and in defining G we 
took the derivative of I with respect to W. Now, it is well known [S-IO] that, in general, 
charge neutrality in the leads requires that the electrochemical potential drop (or the rigid 
shift included in Ho) between the leads, Wbads. be given by a function of W, F(W), where 
F ( W )  depends on the transmission properties of the sample. Explicit expressions have been 
obtained [S-101 for 

lim (d WldJd W) w-bo 

at B = 0 for the case of perfectly conducting leads. 
If Wlw* # W, then in defining G we have a choice between differenhating I either with 

respect to W or with respect to W m ,  leading to different results. In particular, defining 
Glads as dl/dWl-, the analogue of (40) is 

G i d O ,  0) = (4nez/h) Tr[pp(EF)~t(EF)P20(EF)t(EF)l/(d~ds/dW)w=0. (41) 

It is worth pointing out that there is no contradiction between equations (40) and (41): 
both have been obtained from the same expression for the current, equation (37). and 
we can unambiguously go from G(O.0) to Gle*(O, 0) and vice versa by the conversion 
factor (dW,dd,/dW)wa. In many important cases, however, such as conduction between 
two semi-infinite 3D systems via a finite sample, W I ~ ~ ~  will be equal to W with a unique 
definition of the conductance. 

4. Applications 

For purposes of illustration we now apply equation (40) to three physical situations: the 
one-atom contact, the disordered, finite ID chain, and the generalized stacking fault. In all 
of them we shall use a I-S nearest-neighbour orthonormal tight-binding (TB) model. Also, 
in all of them, the leads 1 and 2 will be represented by semi-infinite perfect crystals. 

We shall require some preliminary results. A semi-infinite perfect crystal can be 
represented by a stack of 2D atomic layers, as illustrated in figure 3. Each of these layers 
in isolation has a set of eigenstates ( Iq ) )  with eigenvalues [ E ( q ) ] ,  where q is a transverse 
wavevector. If IR,) is a 1-S orbital on the nth atom in the layer, where R,, is the position 
vector of the atom, then 

where 1/JN2 is a normalization factor. Both [ Iq ) ]  and [R)} are complete orthonormal 
sets for the layer. 
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0 1 2 3  10,s) 11,s) 12.9 13,s) 

Figure 3. A semi-infinite perfect crystal, 
viewed as a stack of 1D atomic layers. 

Figure 4. A semi-infinite chain of ZD states wiih transverse wavevector 
q.  

Let now p,q) stand for the 2~ state of wavevector q on the Ith layer of the crystal. 
(II,q)] is an orthonormal basis for the semi-infinite crystal. Let IR;) by a 1-S orbital on 
the nth atom in the Ith layer, with position vector R:. Then 1l.q) is given by 

Owing to the transverse translational symmetry of the semi-infinite crystal, the eigenstates 
for the crystal will contain only 2D states with the same q 

W)) = CC,(q)ll.q) (44) 
t 

where I@(q)) is an eigenstate for the crystal with transverse wavevector q ,  and [Ct(q)) are 
expansion coefficients. 

Consequently, i f q  # q ' ,  then (I,qlHlm,q') and (I,qlG*lm,q'), where H and G* are 
the Hamiltonian and the Green operators for the crystal, respectively, will be identically 
equal to zero for all 1, m. We assume that (I, ql Hlm, q )  vanishes unless m = I, I f  1. When 
m = 1, the matrix element becomes the on-layer energy E(q).  For ( l , q l H I I +  l ,q ) ,  we 
introduce the symbol A(q). For (I,qlG*(E)lm,q),  we introduce the symbol G k ( E , q ) .  
We now calculate G&(E,g) .  

Consider a semi-infinite chain of 2D states with transverse wavevector q. as illustmted 
in figure 4. We can consmct the above chain from the state 10, q )  in isolation and the semi- 
infinite chain starting at 11, q )  by the introduction of a perturbation H', coupling 10, q )  to 
II,q).  as illustrated in figure 5. Let situation ( U )  have a Green operator GO+, and situation 
(b) a Green operator G+. We have 

(0,4IH'll,q) =H&@) =A(q)  (45) 
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lGgw'e 5. A semi-infinite c'oain of 
m states of aaosverse wavevector q 

0 A h and am state with 4 in isolation (a)  
A 

" U - - -  (b) used to generate a new semi-infinite 
chain of U) states with q (b) by the 

10, q ) ILq) 12,9 ) 13,q) inhoduction of a coupling If'. 

Figare 6. A single atoms benveen two identical 
semi-infinite FCC crystals 1 and 2, cut along their 
( I  1 1) planes. The hopping integnls between 
6 and its three nearst neighbours in 1 are ule 
same and equal to n. and the hopping integrals 
be- s and its three nearest neighbours in 2 
are thesameand equal U) n. 

1 

for G&(E, q) we obtain 

which, using (45H47), can be solved for G&(E, q )  

disregarding the special case when both ( E - E ( q ) )  and A(q)A(q)* are zero, which requires 
special care. Now we have to choose between the two solutions for G&(E, 4). 

In the case when the expression under the square root in (49) is negative, we choose the 
solution with the minus sign, since we want the imaginary part of G&(E, q )  to be negative. 

In the case when the expression under the square root is positive (so that the imaginary 
part of G&(E, q )  is zero), we choose the solution that tends to G E ( E ,  q) = 1 / [ E  - E(q)]  
as A(q)A(q)* tends to zero. In other words, we choose the plus sign if [E - E ( q ) ]  < 0 
and the minus sign if [E - E ( q ) ]  z 0. 

Having thus computed G&(E,q) ,  we can now calculate the matrix element of G* 
between atomic sites m and n on the surface of the semi-infinite crystal 

GRiIG+(E)IR,O) = X(RiII, q)(i9qlG+(E)l~'3 q)(l', qlR;) 
lY:* 

But since q is a continuous label, we can replace ( l / N z )  C, by [ c ~ / ( Z r ) ~ ] ~ d ~ q ,  where ct 
depends on the geometry of the 2D layers, and the integral is taken over the first Brillouin 
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zone for the layer. Thus, (50) becomes 

T N Todorov et d 

(R;IG+(E)I@ = & /(explip. (Ri - R ~ ) l l ~ & ( E ~ q ) d z q .  (51) 

Finally, we introduce y as the hopping integral (matrix element of H) between nearest- 
neighbour atomic sites in the perfect crystal and note that, in a I-S orbital TB mode, both 
H and G* are symmetric matrices in the atomic basis (IR!,)]. 

Now that we know how to calculate the matrix elements of the Green operator for 
a semi-infinite perfect crystal between sites on the surface in a I-S nearest-neighbour TB 
model, we proceed with the three illustrative examples. 

4.1. The one-atom contact 

The reader will be familiar with previous "E calculations on the one-atom contact [ll-131 
in the context of the experiments by Gimzewski and Moiler [14]. 

In the present calculation the sample s is a single atom and the leads 1 and 2 are identical 
semi-infinite perfect pcc crystals cut along their (1 1 1) planes. The atom s is between 1 
and 2 and is equidistant from its three nearest neighbours on both crystal surfaces. Let 
[(Il)], Is), (12))J be the orthonormal atomic basis with 11) being a I-S orbital in crystal 1, Is) 
being the 1-S orbital on the sample atom and 12) being a 1-S orbital in crystal 2. V couples 
s to its three nearest neighbours on the surfaces of 1 and 2. Thus, (IlVls) = (slVll) = y~ 
if 11) is the I-S orbital on one of the three nearest neighbours of s on the surface of lead 
1 and (1IVls) = (slVI1) = 0 for all other 11). Similarly, (2IVls) = (slV12) = M if 12) 
is the 1-S orbital on one of the three nearest neighbours of s on the surface of lead 2 and 
(21Vls) = (slVl2) = 0 for all other 12). This situation is presented diagrammatically in 
figure 6. Also, (SIVIS) = 0. 

Taking the trace in the atomic basis and remembering that ~ 7 , ~  .= (Cy; - Gy5)/(2ni), 
and that G E  are symmetric mahices in the atomic basis, we obtain from (40) 

ez 
G(O, 0) = 2 4  1 IGF(EF) I 1')l Im[(21G:+(EF) I2')lV&: I (S~G+(EF) IS) 1' (52) 

l:l':2z' 

where indices 1 and 1' run over the three nearest neighbours of s on the surface of lead 
1, and similarly for indices 2 and 2' and the surface of 2. Let Iyl(llGy'(E~)Il) = g = 
Iyl(2lG:+(E~)l2), where 11) and 12) are sites on the surfaces of leads 1 and 2 respectively, 
and y ,  once again, is the hopping integral between nearest neighbours in the perfect crystals. 
Also, let lyt(1p$+(EF)l1') = f = Iyl(2lG~(E~)l2 ' ) .  where 11). 11') and 12). 12') are pairs 
of nearest-neighbour sites on the surfaces of leads 1 and 2, respectively. Let AI  = y l / I y I  
and A2 = yz/lyl .  Solving the Dyson equation for (s[G+(EF)ls) and substituting in (52), we 
find 

whereA=EF/lyl. Theon-siteenergy Eoiszeroonallatoms: Eo=(lIHIl) = (slHls) = 
(21H12) = 0, for all 1, 2. 

Since AI  and A2 depend on the distances of s from the two crystal surfaces, equation 
(53) enables us to compute G(0,O) as a function of the position of s between the crystals. 
In fact, assuming all hopping integrals to be the same as those between 1-S orbitals on 
isolated pairs of hydrogen-like atoms, we can calculate AI  and A2 analytically: 
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where a is the nearest-neighbour separation in the crystals, ro is the Bohr radius of the 
1 s  orbital and q.2 are the distances of s from its nearest neighbours on surfaces 1 and 2, 
respectively, in units of a .  

Choosing A to correspond to half-filled bands in the crystals, computing g and j and 
setting Ai = A2 = -1 (so that s is stably bonded to both crystal surfaces) we find a zero- 
voltage, zero-temperature conductance, G(0, 0). of 1 . 0  in units of e2/rrfi. In fact, inspection 
of (53) shows that e2/nh is the maximum possible value of G(0,O). 

4.2. The disonlered I D  chain 

Now the sample s is a ID atomic chain containing N atoms. The atoms in the chain are 
labelled as SI. a, . . . , SN. The leads 1 and 2 are once again identical semi-infinite perfect 
FCC crystals cut along their (1 1 1 )  planes. V couples SI to its three nearest neighbours 
on the surface of lead 1, and SN to its three nearest neighbours on the surface of lead 
2. We imagine SI to be stably bonded to crystal I and SN to be stably bonded to 
crystal 2. In other words, if [(ll)], ( I s n ) ] ,  (12))] is the orthonormal atomic basis, then 
(1lVlsi) = ( s l l v l l )  = ( 2 l v l s N )  = ( s N l v l 2 )  = y if 11) and 12) are among the respective 
groups of nearest neighbours of s. AI1 other matrix elements of V are zero. This situation 
is presented in figure 7. 

1 k-- -4 SN 2 

Figure 7. A ID chain of N atoms, SI, a, . . . , SN, tem two identical semi-infinite FCC crystals 
I and 2, cut along their (1 1 1) planes; SI is stably bonded to the surfm of 1 and SN is stably 
bonded to the surface of 2. 

Taking the trace in the atomic basis, and employing the same definition of g and f as 
before, we obtain from (40) 

G(O, 0) = (e2/nfi)36[Im(g f 2f)IZl(SllC+(EF)ISN)121Y12. (55) 

Solving the Dyson equation for (sIIG+(EF)IsN), we get 

IV~(S~IG+(EF)~SN) = iIdh@+(EF)h)(l - 3(g -k ~ f ) ~ Y t [ ( ~ l t ~ O f ( ~ ~ ) ~ ~ ~ )  

-k (S"lG0+(EF)lSN)1 -k 9k + ~f)Z~~12[(StlGOf(~F)ISi)(SNIGo+(EF)ISN) 
- (Si IGO+(&)~SN)~])-'. (56) 

We introduce the notation Bbb(n)/lyl for the on-site matrix element of the (+) Green 
operator on the first site ('b' stands for 'beginning') of a ID chain of length n atoms, 
Bb,(n)/[yl for the matrix element of the (+) Green operator between the first and the last 
sites ('e' stands for 'end') of a 1D chain of length n, and B&)/lyl for the on-site matrix 
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element of the (+) Green operator on the last site of a ID chain of length n, at EF. Thus, 
for the complete chain we have 

T N Todorov et ai 

lYl(SIIG‘+(&)lSl) = Bbb(N) 

IYl(sllGw(EF)ISN) = &(N) 

IYI(SNIG~~(&)ISN) = B&V. 

Suppose we construct the complete chain starting from a single atom, SI, and adding 
the rest, sz, s3, etc, one at a time. Let the coupling of s. to sn-l by A(n) in units of Iy I .  
Let the on-site energy on s, be ~ ( n )  in units of IyI. Then, solving the Dyson equation at 
each step, we obtain the iterative equations 

B,(n) = 1/[A - ~ ( n )  - A(n)’B& - l)] (57) 

(58) 

(59) 

Bbe(n) = Bte(n - I)A(n)B&) 

Bbb(n) = Bbb(n - 1) f &(n - l)A(n)Bte(n) 

where, once again, A = Ep/ ly l .  Starting with B d 1 )  = &(I) = &,(I) = l/A, we 
can calculate B,(N), &(N) and Bbb(N) from equations (57H59). Hence., from (56) 
we obtain IyI(slICt(Ep)lsN) and hence, from (55). G(O.0). The value of A is chosen to 
correspond to half-filled bands in the crystals. 

First, we look at the perfect chain, defined by A(n) = - l , ~ ( n )  = E ,  for all n. 
Computation shows that, when the chain is made of the same atoms as the crystals, i.e. 
E = 0, G(O.0) remains equal to 1.0 in units of e2/nh for any value of N. (We have studied 
the case N < IOOOa.) G(0,O) < 1.0e2/zh for all other values of E .  In particular, for 
E > A + 2 or E c A - 2, G(0,O) is essentially zero for N 2 30. The reason for this is that 
the band for the perfect chain lies in the energy range [E - 2 , ~  + 21 and if c > A + 2 or 
E < A - 2, then there are no eigenstates for the chain at EF. 

Now we investigate the disordered chain. We shall consider three types of disorder: 
(i) pure positional, with A(n) being a random variable and ~ ( n )  being constant; (U) pure 
compositional, with I(n)  being constant and E(n) being a random variable; and (iii) 
combined, with both A(n) and ~ ( n )  being random variables. In all three cases, we want to 
study G(0,O) as a function of N. In our simulations we use a random number generator, 
ran(x), to generate random reals in the interval [O, 1). 

For producing disorder (i), we use 

A(n) = -[OS + 0.5ran(x)] (60) 

to generate a rectangular distribution for A(n) with -A@) E [0.5, 1). Also, we set E(n) = 0, 
for all n. 

For disorder (ii), we use 

e(n)  = 1 - 2ran(x) (61) 

to produce a rectangular distribution for ~ ( n )  with E(n) E (-1, I], and set A(n) = -1, for 
all n. 

For disorder (iii), we use generating procedures (60) and (61) in conjunction with each 
other. 

In all three cases, G(0,O) exhibits extremely unstable behaviour with respect to 
the random configuration. In fact, for a fixed N, G(O.0) may vary by several orders 
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Figure 9. Plot of [(- In G(0, O))l1fl (vertical axis) ver- 
sus U (horiwntal axis) for varying pure compositional 
disorder in a ID dwin of length N = 300, with a(") E 
( -U,  U ] .  (e(")) = 0 and oC(n)l  - U. U n )  = -1. for 
all n. C(0.0) is in units of e'/nfi. 

plgure 8. Plot of (-In G(0,O)) (vertical axis) versus 
N (horiwntal axis) for various types of disorder in a ID 

chain of length N. (0) Case (i), pure positional disorder 
with -U") E [OS. 1) and s(n) = 0, for all n. (+)Case 
(ii), pure compositional disorder with A(n) = -1. for 
all n, and e(n) E (-1. 11. ( A )  Case (iii), combined 
disorder with -A(n) E 10.5, I )  and a(n) E (-1. I]. 
C(0. 0) is in units of 2 / n h .  

of magnitude with the random configuration. We are, therefore, compelled to use 
configurational averages. 

We have computed (-In G(0, 0)), where the average is taken over 200 configurations 
and G(0,O) is in units of e2/nh, as a function of N .  The results are presented in figure 8. 
The straightness of the lines demonstrates the exponential spatial localization of the carriers 
in the disordered ID region. 

Next, we look at the dependence of G(O.0) on the extent of the disorder for a fixed 
N .  We consider two cases: (iv) varying pure compositional disorder, and (v) varying pure 
positional disorder. 

For (iv) we use 

E @ )  = u[l -2ran(x)J (62) 

producing a rectangular distribution for ~ ( n )  with ~ ( n )  E (-u,~], ( ~ ( n ) )  = 0 and 
u[c(n)l - U ,  where U stands for standard deviation. We set h(n) = -1, for all n. In 
figure 9 we have plotted [(-In G(0, 0))1''2 versus U for N = 300, where the averages of 
-In G(O.0) are taken over 500 configurations, and G(0,O) is in units of e2/rrh. The results 
suggest that G(0,O) decreases exponentially with the variance, u2, of c(n) for a fixed N .  

For (v) we use 

h(n) = -[I - U r a n ( X ) ]  (63) 

producing a rectangular distribution for h(n) with -h(n) E (1 - U ,  11, (-A@)) = 1 - u / 2  
and u[A(n)] - U .  We set ~ ( n )  = 0, for all n. In figure 10 we have plotted 
(1 - u / 2 ) [ ( -  InG(O,O))]'~ versus U for N = 300, where, once again, the averages of 
-In G(0,O) are taken o v a  500 configurations, and G(O.0) is in units of e2/rh .  The results 
suggest that for small u[h.(n)l, G(0,O) decreases exponentially with ~~[h.(n)]/(A.(n))~ for 
a fixed N .  
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Figure 10. Plot of (1 -u/Z)[{- In C(0, 0))1'/2 (vettical 
axif) versus U (horizontal axis) for varying pure 
positional disorder with -A(n) E (1 - U .  I], ( - A h ) )  = 
I - nf2 and oIA(n)] - U ,  s(n)  = 0. for all n, in a I D  
chain of length N = 300. C(0,O) is in units of e2/lrh. 

Figure 11. Two semi-infinite crystals, 
shifted relative to each other along the 
interface &tween them. 

I 
4 

4.3. The generalized stacking fault 

In this example there is no sample. In other words, the leads 1 and 2 are coupled directly to 
each other. The leads are again identical, semi-infinite perfect FCC crystals, cut along their 
(1 1 1) planes, shifted relative to each other along the (1 1 1) planes by an arbitrary amount. 
Again, the crystals can be thought of as stacks of 2D atomic layers. We label these layers 
by an integer n E (-co, +m), so that all layers with n < 1 belong to lead 1 and all layers 
with n 2 belong to lead 2 (figure 11). 

- 0.5 

F i  12. Conductance per atom (L axis) vmus 
relative displacement (xy plane) of two identical semi. 
infinite RC crystals, cut along their (1-1 1) planes. The 
x axis is the displacement along [O 1 11 in units of the 
nearest-neighbour separation a in the pe-rfect crystal, 
and they axis is the displacement along [Z I I] in units 
Of a. 

We shall employ the orthonormal basis {l l ,q)},  where, again, 11. q )  is a ZD eigenstate of 
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wavevector q in the lth layer. V couples each atom in layer 1 to its three nearest neighbours 
in layer 2. Since V does not disturb the transverse translational symmetry of the system, 
H and G* are diagonal in q.  i.e. if q # q‘. then ( l ,qlHlm,q’)  and (l,qlG*.lm, q’) vanish 
identically for all I, m. Thus, the only non-zero matrix elements of V are (1 ,  p I VIZ, q )  and 
(2 ,qlV[l ,q) .  Taking the trace in the basis (11,q)). we obtain from (40) 

where we have used the fact that G F ( E F , ~ )  = Gtg(EF,q). Solving the Dyson equation 

t = V + V G %  (65) 

for fzl (EF. q) .  substituting in (64). dividing (64) by NZ to obtain the conductance per atom 
in the interface and replacing (l/Nz) E, by [ a / ( 2 ~ ) ~ ]  Jdzq. we find 

EF is again chosen to correspond to half-filled bands in the crystals. The separation of 
crystals 1 and 2 is chosen in such a way that the distance between each atom in layer 1 
and its nearest neighbour in layer 2 remains constant and equal to the nearest-neighbour 
separation a in the crystals. For the hopping integrals between atoms in layer 1 and their 
nearest neighbours in layer 2, we use the scaling law, specified in equation (54). 

Computation of (66) shows that G(O,O)/Nz has a maximum when the two semi- 
infinite crystals are stably bonded (so as to form one infinite perfect crystal), i.e. when 
Vlz(q) = A(q). and has a minimum when the two crystals are displaced in such a way that 
each atom in layer 1 is directly opposite an atom in layer 2. The maximum conductance 
is 0.81e2/Hh per atom. This result is direct evidence for quantum interference. In the 
one-atom contact calculation, we found a conductance of l.0e2/nh when the single atom 
was stably bonded to both crystal surfaces. If the conductance were simply proportional to 
the number of oneatom contacts between the two crystals, then the maximum conductance 
per atom in the stacking fault calculation would also be l.0e2/nh. The fact that it is not 
means that there is interference between the different oneatom contacts, making up the 
interface between 1 and 2. G(0, O)/Nz for all other stacking fault configurations depends 
on a/ro. where ro is the Bohr radius of the 1-S orbital. With a/ro = 2, we find a minimum 
conductance per atom of 0.65ez/rrh, yielding a contrast of about 20%. In figure 12 we 
have plotted the conductance per atom, G(O,O)/Nz, in units of e2/rrh as a function of the 
displacement of crystal 2 relative to crystal 1 with a/ro = 2. 

5. summary 

In conclusion, we may say that we have at our disposal a methodology with the aid of 
which the computation of the elastic conductance of a wide range of structures becomes 
easy. The results of the analysis emphasize the point that in elastic transport the conductance 
of a circuit, containing a sample, is determined by the coupling of the sample to the other 
components of the circuit, and by the nature of these components, as well as by the sample 
itself. The method can be extended to include self-consistency corrections to the non- 
interacting single-particle states (I$:)], or, equivalently, to the matrix elements of G* by 
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solving the Lippmann-Schwinger or the Dyson equations, respectively, with some self- 
consistent field potential. 

The results of this work will be applied in the future to the study of the conduction 
properties of the tipsurface contact both in the tunnelling and in the contact regimes for the 
scanning tunnelling microscope (STM). This study will be based on the molecular dynamics 
simulations research conducted at this department [15]. 
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